44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617

168Citations
Citations of this article
167Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer. Radiolabeled PSMA-617, a 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA)-functionalized PSMA ligand, revealed favorable kinetics with high tumor uptake, enabling its successful application for PET imaging (68Ga) and radionuclide therapy (177Lu) in the clinics. In this study, PSMA-617 was labeled with cyclotron-produced 44Sc (T1/2 = 4.04 h) and investigated preclinically for its use as a diagnostic match to 177Lu-PSMA-617. Results: 44Sc was produced at the research cyclotron at PSI by irradiation of enriched 44Ca targets, followed by chromatographic separation. 44Sc-PSMA-617 was prepared under standard labeling conditions at elevated temperature resulting in a radiochemical purity of >97% at a specific activity of up to 10 MBq/nmol. 44Sc-PSMA-617 was evaluated in vitro and compared to the 177Lu- and 68Ga-labeled match, as well as 68Ga-PSMA-11 using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu prostate cancer cells. In these experiments it revealed similar in vitro properties to that of 177Lu- and 68Ga-labeled PSMA-617. Moreover, 44Sc-PSMA-617 bound specifically to PSMA-expressing PC-3 PIP tumor cells, while unspecific binding to PC-3 flu cells was not observed. The radioligands were investigated with regard to their in vivo properties in PC-3 PIP/flu tumor-bearing mice. 44Sc-PSMA-617 showed high tumor uptake and a fast renal excretion. The overall tissue distribution of 44Sc-PSMA-617 resembled that of 177Lu-PSMA-617 most closely, while the 68Ga-labeled ligands, in particular 68Ga-PSMA-11, showed different distribution kinetics. 44Sc-PSMA-617 enabled distinct visualization of PC-3 PIP tumor xenografts shortly after injection, with increasing tumor-to-background contrast over time while unspecific uptake in the PC-3 flu tumors was not observed. Conclusions: The in vitro characteristics and in vivo kinetics of 44Sc-PSMA-617 were more similar to 177Lu-PSMA-617 than to 68Ga-PSMA-617 and 68Ga-PSMA-11. Due to the almost four-fold longer half-life of 44Sc as compared to 68Ga, a centralized production of 44Sc-PSMA-617 and transport to satellite PET centers would be feasible. These features make 44Sc-PSMA-617 particularly appealing for clinical application.

Cite

CITATION STYLE

APA

Umbricht, C. A., Benešová, M., Schmid, R. M., Türler, A., Schibli, R., van der Meulen, N. P., & Müller, C. (2017). 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Research, 7(1). https://doi.org/10.1186/s13550-017-0257-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free