Abstract
Aim: The crystallization step is required for lithium disilicate ceramics to change color, improve the mechanical properties and yield material to support mouth loading. Several furnaces could complete the crystallization process. This study evaluated the flexural and bond strength of lithium disilicate ceramics crystallized by different furnaces with the presence or not of vacum and different holding time. Methods: Forty lithium disilicate samples were divided into two groups: Programat P300 - control group with vacuum and holding time 7 minutes (CG) and FVPlus- experimental group and without vacuum and holding time 25 minutes (EG) and submitted to 2 experimental tests: 3-point flexural strength test and micro shear bond strength test (μSBS). For this test, the surface of the samples was treated and 1mm2 of resin cement was applied on the surface. The samples were stored in artificial saliva over 2 time periods (24 hours: T0; 1-month storage: T1). To analyze the morphologic crystals of the ceramics tested, one representative specimen from each group were analyzed by using Scanning Electron Microscopy (SEM). Results: There was no significant difference in 3-point flexural strength test between groups CG and EG (p= 0.984). The μSBS results showed no statistical difference between groups, considering different storage time. There was no difference in the 3-point flexural strength and μSBS for lithium disilicate samples regardless of heat treatment of furnace type. The storage time had no influence on the μSBS. No differences were noted in the shape and size of these crystals when comparing the furnace analyzed by SEM images. Conclusion: Different furnaces did not influence the flexural and bond strength of lithium disilicate ceramics.
Author supplied keywords
Cite
CITATION STYLE
Zancope, K., de Castro, T., Tavares, L. do N., Prudente, M. S., & das Neves, F. D. (2019). Influence of furnace type in the crystallization of lithium disilicate on bond strength and flexural strength. Brazilian Journal of Oral Sciences, 18(1). https://doi.org/10.20396/bjos.v18i0.8655320
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.