Abstract
Squeezing light into nanometer-sized metallic nanogaps can generate extremely high near-field intensities, resulting in dramatically enhanced absorption, emission, and Raman scattering of target molecules embedded within the gaps. However, the scarcity of low-cost, high-throughput, and reproducible nanogap fabrication methods offering precise control over the gap size is a continuing obstacle to practical applications. Using a combination of molecular self-assembly, colloidal nanosphere lithography, and physical peeling, we report here a high-throughput method for fabricating large-area arrays of triangular nanogaps that allow the gap width to be tuned from ∼10 to ∼3 nm. The nanogap arrays function as high-performance substrates for surface-enhanced Raman spectroscopy (SERS), with measured enhancement factors as high as 108 relative to a thin gold film. Using the nanogap arrays, methylene blue dye molecules can be detected at concentrations as low as 1 pM, while adenine biomolecules can be detected down to 100 pM. We further show that it is possible to achieve sensitive SERS detection on binary-metal nanogap arrays containing gold and platinum, potentially extending SERS detection to the investigation of reactive species at platinum-based catalytic and electrochemical surfaces.
Author supplied keywords
Cite
CITATION STYLE
Luo, S., Mancini, A., Wang, F., Liu, J., Maier, S. A., & de Mello, J. C. (2022). High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy. ACS Nano, 16(5), 7438–7447. https://doi.org/10.1021/acsnano.1c09930
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.