Environmentally friendly iron(II) catalysts for atom-transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N-trialkylated-1,4,9-triazacyclononane (R3TACN) ligands. Two types of structures were confirmed by crystallography: "[(R3TACN)FeX2]" complexes with relatively small R groups have ionic and dinuclear structures including a [(R 3TACN)Fe(μ-X)3Fe(R3TACN)]+ moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3TACN)FeX2]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl) 3TACN}FeBr2] (4b) was the best catalyst for the well-controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4b (59ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4b (117ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined. It's easy being green: Structurally well-defined [(R3TACN)FeX 2] complexes realized green atom-transfer radical polymerization by judicious choice of the R group on the N,N,N-trialkylated-1,4,9- triazacyclononane (R3TACN) ligands (see scheme). [{(Cyclopentyl) 3TACN}FeBr2] was the best catalyst for controlled polymerization of all three monomers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CITATION STYLE
Nakanishi, S. I., Kawamura, M., Kai, H., Jin, R. H., Sunada, Y., & Nagashima, H. (2014). Well-defined iron complexes as efficient catalysts for “green” atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling. Chemistry - A European Journal, 20(19), 5802–5814. https://doi.org/10.1002/chem.201304593
Mendeley helps you to discover research relevant for your work.