Named Entity Recognition for Low-Resource Languages - Profiting from Language Families

2Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Machine learning drives forward the development in many areas of Natural Language Processing (NLP). Until now, many NLP systems and research are focusing on high-resource languages, i.e. languages for which many data resources exist. Recently, so-called low-resource languages increasingly come into focus. In this context, multi-lingual language models, which are trained on related languages to a target low-resource language, may enable NLP tasks on this low-resource language. In this work, we investigate the use of multi-lingual models for Named Entity Recognition (NER) for low-resource languages. We consider the West Slavic language family and the low-resource languages Upper Sorbian and Kashubian. Three RoBERTa models were trained from scratch, two mono-lingual models for Czech and Polish, and one bi-lingual model for Czech and Polish. These models were evaluated on the NER downstream task for Czech, Polish, Upper Sorbian, and Kashubian, and compared to existing state-of-the-art models such as RobeCzech, HerBERT, and XLM-R. The results indicate that the mono-lingual models perform better on the language they were trained on, and both the mono-lingual and language family models outperform the large multi-lingual model in downstream tasks. Overall, the study shows that low-resource West Slavic languages can benefit from closely related languages and their models.

Cite

CITATION STYLE

APA

Torge, S., Politov, A., Lehmann, C., Saffar, B., & Tao, Z. (2023). Named Entity Recognition for Low-Resource Languages - Profiting from Language Families. In EACL 2023 - 9th Workshop on Slavic Natural Language Processing, Proceedings of the SlavicNLP 2023 (pp. 1–10). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.bsnlp-1.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free