The slab beneath the Alboran Sea is a consequence of the collision between two continents (Europe and Africa), which was initiated along the northeastern Spanish coast, experienced slab rollback and migrated to the area adjacent to the two continents. The tectonic background in this area includes episodes of collisions with adjacent continents as well as extension of those basins in the western Mediterranean. Here, we present three-dimensional (3D) Kirchhoff-approximate generalized Radon transform (GRT) images to further constrain the lithospheric structures previously identified by other researchers. The GRT images were calculated from the same P-to-S (Pds or Ps) teleseismic receiver functions (RFs) as the previous common conversion point (CCP) stacking, but the GRT data provide figures with greater resolution than the Pds RFs CCP results. This study indicates that the Alboran Slab may have completely detached from the crustal base under the western Betics Mountains and that a larger range of lithospheric 'peeling off' developed beneath the western part of the Betics Mountains than some previous results have claimed. The observed thin lithosphere under the Middle Atlas (MA) and eastern High Atlas (HA) may have a geodynamic relationship with lithospheric delamination under the eastern part of the Rif Mountains, which has also led to the thin lithosphere under the eastern Rif. According to the thick lithosphere under the western HA, the shallow LAB under the MA and eastern HA may have no heat-flow connection with the Canary mantle plume, as stated in several previous studies.
CITATION STYLE
Li, Q., Palomeras, I., & Meng, X. (2021). Lithospheric structure beneath southern Iberia and northern Morocco constrained by 3D Kirchhoff-approximate GRT imaging. Journal of Geophysics and Engineering, 18(2), 268–281. https://doi.org/10.1093/jge/gxab012
Mendeley helps you to discover research relevant for your work.