Methionine adenosyltransferase II (MAT II) is a key enzyme in cellular metabolism and catalyzes the formation of S-adenosylmethionine (SAMe) from L-methionine and ATP. Normal resting T lymphocytes have minimal MAT II activity, whereas activated proliferating T lymphocytes and transformed T leukemic cells show significantly enhanced MAT II activity. This work was carried out to examine the role of MAT II activity and SAMe biosynthesis in the survival of leukemic T cells. Inhibition of MAT II and the resultant decrease in SAMe levels enhanced expression of FasL mRNA and protein, and induced DISC (Death Inducing Signaling Complex) formation with FADD (Fas-associated Death Domain) and procaspase-8 recruitment, as well as concomitant increase in caspase-8 activation and decrease in c-FLIP s levels. Fas-initiated signaling induced by MAT II inhibition was observed to link to the mitochondrial pathway via Bid cleavage and to ultimately lead to increased caspase-3 activation and DNA fragmentation in these cells. Furthermore, blocking MAT 2A mRNA expression, which encodes the catalytic subunits of MAT II, using a small-interfering RNA approach enhanced FasL expression and cell death, validating the essential nature of MAT II activity in the survival of T leukemic cells. © 2009 IBCB, SIBS, CAS All rights reserved.
CITATION STYLE
Jani, T. S., Gobejishvili, L., Hote, P. T., Barve, A. S., Joshi-Barve, S., Kharebava, G., … Barve, S. (2009). Inhibition of methionine adenosyltransferase II induces FasL expression, Fas-DISC formation and caspase-8-dependent apoptotic death in T leukemic cells. Cell Research, 19(3), 358–369. https://doi.org/10.1038/cr.2008.314
Mendeley helps you to discover research relevant for your work.