Abstract
I impose the Newtonian criteria of inertial frames on the c.o.m.trajectories of massive objects undergoing spontaneous collapse of their wave function. The corresponding modification of the so far used stochastic Schrödinger equation eliminates the Brownian motion of the c.o.m., and restores the exact inertial motion for free masses. For the collapse of Schrödinger cat states the Born rule is satisfied invariably. The proposed machinery comes from the radical assumption that, in the vicinity of the spontaneously localized mass, the stochastic fluctuations of the c.o.m.—inevitable in the collapse process—would drag the physical inertial frame with themselves. The perspective of a general theory is presented where the spontaneous-collapse-caused breakdown of local energy-momentum conservation could be remedied by altering the metric, resulting in collapse-induced curvature of the space-time. My assumption of frame-drag by quantized masses is independent of the general relativistic frame-drag by classical masses.
Author supplied keywords
Cite
CITATION STYLE
Diósi, L. (2019). Spontaneous wave function collapse with frame dragging and induced gravity. Quantum Reports, 1(2). https://doi.org/10.3390/quantum1020025
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.