Modulation of telomeres in alternative lengthening of telomeres type I like human cells by the expression of werner protein and telomerase

7Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5-20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae RecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer. Copyright 2012 Aisha Siddiqa et al.

Cite

CITATION STYLE

APA

Siddiqa, A., Cavazos, D., Chavez, J., Long, L., & Marciniak, R. A. (2012). Modulation of telomeres in alternative lengthening of telomeres type I like human cells by the expression of werner protein and telomerase. Journal of Oncology. https://doi.org/10.1155/2012/806382

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free