Anisotropic Janus SiP2Monolayer as a Photocatalyst for Water Splitting

77Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The design of materials meeting the rigorous requirements of photocatalytic water splitting is still a challenge. Anisotropic Janus 2D materials exhibit great potential due to outstandingly high photocatalytic efficiency. Unfortunately, these materials are scarce. By means of ab initio swarm-intelligence search calculations, we identify a SiP2 monolayer with Janus structure (i.e., out-of-plane asymmetry). The material turns out to be semiconducting with an indirect band gap of 2.39 eV enclosing the redox potentials of water. Notably, the oxygen and hydrogen evolution half reactions can happen simultaneously at the Si and P atoms, respectively, driven merely by the radiation-induced electrons and holes. The carrier mobility is found to be anisotropic and high, up to 10-4 cm2 V-1 s-1, facilitating fast transport of the photogenerated carriers. The SiP2 monolayer shows remarkably strong optical absorption in the visible-to-ultraviolet range of the solar spectrum, ensuring efficient utilization of the solar energy.

Cite

CITATION STYLE

APA

Yu, T., Wang, C., Yan, X., Yang, G., & Schwingenschlögl, U. (2021). Anisotropic Janus SiP2Monolayer as a Photocatalyst for Water Splitting. Journal of Physical Chemistry Letters, 12(9), 2464–2470. https://doi.org/10.1021/acs.jpclett.0c03841

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free