GJA8 missense mutation disrupts hemichannels and induces cell apoptosis in human lens epithelial cells

16Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Autosomal dominant congenital cataract (ADCC), the most common hereditary disease, is a major cause of eye disease in children. Due to its high genetic and clinical heterogeneity, the identification of ADCC-associated gene mutations is essential for the development of molecular therapies. In this study, we examined a four-generation Chinese pedigree with ADCC and identified putative mutations in ADCC candidate genes via next-generation sequencing (NGS) followed by Sanger sequencing. A novel missense mutation in GJA8 (c.T217C) in ADCC patients causes a serine-to-proline substitution at residue 73 of connexin 50 (Cx50); no mutation was found in unaffected family members and unrelated healthy individuals. Functional analysis revealed that this missense mutation disrupts protein function in human lens epithelial cells (HLEpiCs), which fails to form calcium-sensitive hemichannels. Furthermore, mutant Cx50 leads to decreased ROS scavenging by inhibiting G6PD expression and thus induces cell apoptosis via aberrant activation of the unfolded protein response (UPR). In conclusion, we report a novel GJA8 heterozygous mutation in a Chinese family with a vital role in ADCC, broadening the genetic spectrum of this disease.

Cite

CITATION STYLE

APA

Li, L., Fan, D. B., Zhao, Y. T., Li, Y., Yang, Z. B., & Zheng, G. Y. (2019). GJA8 missense mutation disrupts hemichannels and induces cell apoptosis in human lens epithelial cells. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55549-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free