Nonlinear Influence and Interaction Effect on the Imbalance of Metro-Oriented Dockless Bike-Sharing System

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Dockless Bike-Sharing (DBS) is an eco-friendly, convenient, and popular form of ride-sharing. Metro-oriented DBS systems have the potential to promote sustainable transportation. However, the availability of DBS near metro stations often suffers from either scarcity or overabundance. To investigate the factors contributing to this imbalance, this paper examines the nonlinear influences and interactions that impact the DBS system near metro stations, with Shenzhen, China serving as a case study. An ensemble learning approach is employed to predict the imbalance state. Then, the machine learning interpretation method (i.e., SHapley Additive exPlanations) is used to quantify the contribution of effects, discover the strength of interactions between factors and uncover their underlying interactive connections. The results indicate the influence of external factors and the relations between pairwise variables (e.g., road density and the day of the week) for each imbalanced state. Provide two quantized sets of factors that can result in the supply-demand imbalance and support future transport planning decisions to enhance the accessibility and sustainability of Metro-oriented DBS systems.

Cite

CITATION STYLE

APA

Song, Y., Luo, K., Shi, Z., Zhang, L., & Shen, Y. (2024). Nonlinear Influence and Interaction Effect on the Imbalance of Metro-Oriented Dockless Bike-Sharing System. Sustainability (Switzerland), 16(1). https://doi.org/10.3390/su16010349

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free