Abstract
PREMISE OF THE STUDY: Assortative mating by flowering time can cause temporal genetic structure in species with heritable flowering times. A strong temporal structure, when coupled with a seasonal shift in selection, may lead to adaptive temporal clines. We implemented a prospective and retrospective method to estimate the temporal genetic structure in the pollen pool of Brassica rapa. METHODS: The prospective method uses flowering schedules to estimate the seasonal shift in the pollen donors’ phenotype. By examining the offspring generation, we can get a direct estimate of temporal genetic structure, i.e., a retrospective estimate. However, this estimate is problematic because of the phenotypic correlation of the trait of interest, flowering time, between dam and sire. We developed a novel retrospective method that isolates flowering time by holding the maternal contribution constant and sampled the pollen pool in eight open-pollinated field plots throughout the flowering season. KEY RESULTS: We found temporal genetic structure for flowering time in seven of the eight field plots. Interestingly, the direct (retrospective) temporal structure estimate was 35% larger than the prospective estimate based on flowering schedules. Spatial clumping of pollen donors did not affect temporal structure, but structure intensified when heritability was experimentally enhanced. CONCLUSIONS: Temporal genetic structure, especially for flowering time, likely occurs in many plant populations and may be underestimated using a prospective method. We discuss the genome-wide consequences of temporal genetic structure and the potential for adaptive temporal clines in plant populations.
Cite
CITATION STYLE
Ison, J. L., & Weis, A. E. (2017). Temporal population genetic structure in the pollen pool for flowering time: A field experiment with Brassica rapa (Brassicaceae). American Journal of Botany, 104(10), 1569–1580. https://doi.org/10.3732/ajb.1700210
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.