The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

  • Peiró A
  • Martínez-Gil L
  • Tamborero S
  • et al.
49Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta . Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport and for predicting interactions with host factors that mediate resistance to plant viruses.

Cite

CITATION STYLE

APA

Peiró, A., Martínez-Gil, L., Tamborero, S., Pallás, V., Sánchez-Navarro, J. A., & Mingarro, I. (2014). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016–3026. https://doi.org/10.1128/jvi.03648-13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free