Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia

63Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to interpret the marine clastic record preserved in the sedimentary basins of the East Asian marginal seas, it is important to understand how sediment transport and chemical weathering affect the composition of sediment enroute to its sink. Here we present a new data set for fine-grained sediment (<63 μm) from the Yangtze River and its major tributaries, which represents a baseline for interpreting sediment in the East China Sea. We demonstrate that there is no significant coherent downstream variation in the major element contents, which are generally more enriched than the average upper continental crust, except for water-soluble elements including Sr, Rb, Na, and K. Nd isotopes show that most of the sediment comes from the eastern and middle Yangtze Craton, as well as the Songpan-Garze Terrane. Chemical weathering varies significantly across the basin with upstream tributary sediments being relatively unweathered compared to those in the lower reaches. However, sediments in the main Yangtze stream show no trend in chemical weathering along its course, with some of the least weathered materials being found closest to the delta. Grain size and the abundance of hydrodynamically sorted heavy minerals affect the bulk geochemistry, especially the rare earth elements (REEs).

Cite

CITATION STYLE

APA

He, M., Zheng, H., Clift, P. D., Tada, R., Wu, W., & Luo, C. (2015). Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia. Progress in Earth and Planetary Science, 2(1). https://doi.org/10.1186/s40645-015-0061-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free