The rheological behavior of a fugitive organic ink tailored for direct-write assembly of 3D microfluidic devices is investigated. Rheological experiments are carried out to probe the shear storage and loss moduli as well as the complex viscosity as a function of varying temperature, frequency and stress amplitude. Master curves of these functions are assembled using time-temperature superposition. The fugitive ink, comprised of two organic phases, possesses an equilibrium shear elastic modulus nearly two orders of magnitude higher than that of a commercial reference ink at room temperature and a peak in the relaxation spectrum nearly six orders of magnitude longer in time scale. The self-supporting nature of extruded ink filaments is characterized by direct video imaging. Comparison of the experimentally observed behavior to numerical predictions based on Euler-Bernoulli viscoelastic beam analysis yield excellent agreement for slender filaments. © Appl. Rheol.
CITATION STYLE
Therriault, D., White, S. R., & Lewis, J. A. (2007). Rheological behavior of fugitive organic inks for direct-write assembly. Applied Rheology, 17(1). https://doi.org/10.1515/arh-2007-0001
Mendeley helps you to discover research relevant for your work.