Modeling and simulation of the single grain grinding process of the nano-particle jet flow of minimal quantity lubrication

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Along with strengthening of people’s environmental protection awareness, the MQL technology has been used in grinding, but its limited cooling effect cannot satisfy the requirement of heat transfer enhancement in the grinding area. The new technology of nano-particle jet flow of MQL can effectively solve the heat transfer in the grinding zone and enhance the lubrication characteristics as well. This paper studies mainly the grinding process of the single grain under the condition of the nano-particle jet flow of MQL by establishing the kinematics model, elastic deformation model and plastic accumulation model of the single grain and simulating the value of the surface topography of the single-grain grinding workpiece with quenching 45# as the research subject. The results show that the grinding depth will exert a certain influence over the material deformation on the surface of the workpiece, the pile height and the length of the grinding crack. The yielding amount of the grain center δc and the elastic recovery amount of the materials on the surface of the workpiece δw increases with the grinding depth. The height of the material accumulation increases with the grinding depth. Furthermore, the change amplitude is large and the change gradient decreases correspondingly. The length of the grinding crack increases with the grinding depth, and the grinding depth and the height of the material accumulation have an approximate linear relationship.

Cite

CITATION STYLE

APA

Wang, S., Li, C., Zhang, X., Jia, D., Zhang, D., & Zhang, Q. (2014). Modeling and simulation of the single grain grinding process of the nano-particle jet flow of minimal quantity lubrication. Open Materials Science Journal, 8(1), 55–62. https://doi.org/10.2174/1874088X01408010055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free