Signal transduction during Legionella pneumophila entry into human monocytes

33Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Legionella pneumophila causes Legionnaires' disease by replication in alveolar macrophages and monocytes. The bacteria are internalized most efficiently by opsonin-dependent, CR3-mediated phagocytosis. This investigation focused on determining the role of actin polymerization and phosphorylation signals in this uptake mechanism. Uptake inhibition assays and confocal microscopic analysis indicated that entry of L. pneumophila activated tyrosine kinase (TK) and protein kinase C (PKC) and induced actin polymerization at the site of bacterial entry. Upon L. pneumophila entry, six major cellular proteins (75, 71, 59, 56, 53, and 52 kDa) were TK phosphorylated in soluble fractions of monocytes, and three of these proteins (52, 53, and 56 kDa) were consistently found in insoluble (i.e., cytoskeletal) fractions of monocytes as well. Tyrosine phosphorylation was suppressed when cells were pretreated with the kinase inhibitor genistein, tyrphostin, or staurosporine. A similar tyrosine-phosphorylated protein pattern was observed with CR3-mediated entry of avirulent L. pneumophila, Escherichia coli, or zymosan into monocytes. This study has shown that PKC and TK signals which activate actin polymerization during the process of phagocytosis are induced upon L. pneumophila entry. In addition, CR3 receptor-mediated phagocytosis into monocytes may involve tyrosine phosphorylation of similar proteins, regardless of the particle being phagocytosed. Therefore, the tyrosine-induced phosphorylation observed during opsonized L. pneumophila entry is not a virulence-associated event.

Cite

CITATION STYLE

APA

Coxon, P. Y., Summersgill, J. T., Ramirez, J. A., & Miller, R. D. (1998). Signal transduction during Legionella pneumophila entry into human monocytes. Infection and Immunity, 66(6), 2905–2913. https://doi.org/10.1128/iai.66.6.2905-2913.1998

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free