Evaluation of limb load asymmetry using two new mathematical models

10Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns.

Cite

CITATION STYLE

APA

Kumar, S. N. S., Omar, B., Joseph, L. H., Htwe, O., Jagannathan, K., Hamdan, N. M. Y., & Rajalakshmi, D. (2015). Evaluation of limb load asymmetry using two new mathematical models. Global Journal of Health Science, 7(2), 1–7. https://doi.org/10.5539/gjhs.v7n2p1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free