Synthesis, Structural Characterization, and Pharmacological Activity of Novel Quaternary Salts of 4-Substituted Tryptamines

11Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aeruginascin (4-phosphoryloxy-N,N,N-trimethyltryptammonium) is an analogue of psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) that has been identified in several species of psilocybin-containing mushrooms. Our team previously reported the synthesis, structural characterization, and biological activity of the putative metabolite of aeruginascin (4-hydroxy-N,N,N-trimethyltryptammonium; 4-HO-TMT) and its potential prodrug (4-acetoxy-N,N,N-trimethyltryptammonium; 4-AcO-TMT). Here, we report the synthesis, structural characterization, and pharmacological activity of several quaternary tryptammonium analogues of 4-HO-TMT and 4-AcO-TMT, namely, 4-hydroxy-N,N-dimethyl-N-ethyltryptammonium (4-HO-DMET), 4-hydroxy-N,N-dimethyl-N-n-propyltryptammonium (4-HO-DMPT), and 4-hydroxy-N,N-dimethyl-N-isopropyltryptammonium (4-HO-DMiPT), as well as their hypothesized prodrugs 4-acetoxy-N,N-dimethyl-N-ethyltryptammonium (4-AcO-DMET), 4-acetoxy-N,N-dimethyl-N-n-propyltryptammonium (4-AcO-DMPT), and 4-acetoxy-N,N-dimethyl-N-isopropyltryptammonium (4-AcO-DMiPT). Compounds were synthesized using established methods, and structures were characterized by single-crystal X-ray diffraction. Test compounds were screened for in vitro pharmacological activity at a variety of receptors and transporters to determine potential targets of action. None of the compounds exhibited measurable affinity for the serotonin 2A receptor (5-HT2A), but several analogues had low micromolar affinity (Ki) for the serotonin 1D receptor (5-HT1D) and serotonin 2B receptor (5-HT2B), where they appeared to be weak partial agonists with low micromolar potencies. Importantly, 4-HO-DMET, 4-HO-DMPT, and 4-HO-DMiPT displayed sub-micromolar affinity for the serotonin transporter (SERT; 370-890 nM). The same 4-hydroxy analogues had low to sub-micromolar potencies (IC50) for inhibition of 5-HT uptake at SERT in transfected cells (3.3-12.3 μM) and rat brain tissue (0.31-3.5 μM). Overall, our results show that quaternary tryptammonium analogues do not target 5-HT2Asites, suggesting the compounds lack psychedelic-like subjective effects. However, certain 4-hydroxy quaternary tryptammonium analogues may provide novel templates for exploring structure-activity relationships for selective actions at SERT.

Cite

CITATION STYLE

APA

Glatfelter, G. C., Pham, D. N. K., Walther, D., Golen, J. A., Chadeayne, A. R., Baumann, M. H., & Manke, D. R. (2022). Synthesis, Structural Characterization, and Pharmacological Activity of Novel Quaternary Salts of 4-Substituted Tryptamines. ACS Omega, 7(28), 24888–24894. https://doi.org/10.1021/acsomega.2c03476

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free