Degradation and aging routes of ni-rich cathode based li-ion batteries

108Citations
Citations of this article
288Readers
Mendeley users who have this article in their library.

Abstract

Driven by the increasing plea for greener transportation and efficient integration of renewable energy sources, Ni-rich metal layered oxides, namely NMC, Li [Ni1−x−yCoyMnz] O2 (x + y ≤ 0.4), and NCA, Li [Ni1−x−yCoxAly] O2, cathode materials have garnered huge attention for the development of Next-Generation lithium-ion batteries (LIBs). The impetus behind such huge celebrity includes their higher capacity and cost effectiveness when compared to the-state-of-the-art LiCoO2 (LCO) and other low Ni content NMC versions. However, despite all the beneficial attributes, the large-scale deployment of Ni-rich NMC based LIBs poses a technical challenge due to less stability of the cathode/electrolyte interphase (CEI) and diverse degradation processes that are associated with electrolyte decomposition, transition metal cation dissolution, cation–mixing, oxygen release reaction etc. Here, the potential degradation routes, recent efforts and enabling strategies for mitigating the core challenges of Ni-rich NMC cathode materials are presented and assessed. In the end, the review shed light on the perspectives for the future research directions of Ni-rich cathode materials.

Cite

CITATION STYLE

APA

Teichert, P., Eshetu, G. G., Jahnke, H., & Figgemeier, E. (2020, March 1). Degradation and aging routes of ni-rich cathode based li-ion batteries. Batteries. MDPI. https://doi.org/10.3390/batteries6010008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free