Abstract
Three genes (fmdCAB) encoding an outer-membrane porin for short-chain amides and urea, formamidase, and a putative regulatory protein in Methylophilus methylotrophus have previously been cloned and characterised. Three genes have now been identified downstream of fmdB, viz fmdD encoding a hydrophilic protein containing an N-terminal signal sequence, and fmdEF encoding hydrophobic transmembrane proteins. The derived amino acid sequence of mature FmdD (predicted molecular mass 41,870 Da) was similar to the cytoplasmic, amide-binding protein (AmiC) from Pseudomonas aeruginosa and to several periplasmic, solute-binding proteins from ether bacteria. Mature FmdD was purified and shown to be a monomer (40-45 kDa) with the predicted N-terminal amino acid sequence (ADYPTA-). Equilibrium dialysis showed that the purified protein bound short-chain amides and urea with high affinity (K(d) 7.2 μM for [14C]urea). SDS/PAGE and western blotting using antiserum to mature FmdD showed it was induced by short-chain amides and urea, and repressed by excess ammonia. The derived amino acid sequences of FmdE (32,822 Da) and FmdF (incomplete; >25,435 Da) were similar to the transmembrane proteins BraD/LivH and BraE/LivM, respectively, in various leucine/isoleucine/valine transport systems. Uptake of [14C]urea by washed cells was inhibited by the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone and unlabelled formamide. It is concluded that FmdDEF comprise part of a high-affinity, binding-protein-dependent active-transport system for short-chain amides and urea in M. methylotrophus.
Author supplied keywords
Cite
CITATION STYLE
Mills, J., Wyborn, N. R., Greenwood, J. A., Williams, S. G., & Jones, C. W. (1998). Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. European Journal of Biochemistry, 251(1–2), 45–53. https://doi.org/10.1046/j.1432-1327.1998.2510045.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.