Black Wheat Extracts (Arriheuk) Regulate Adipogenesis and Lipolysis via Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Signaling Pathways

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Polyphenols and other compounds with antioxidant properties are found in plants and are one of the main antioxidants proven to reduce body weight and the risk of insulin resistance. Still, the mechanism behind the protective effects against obesity remains unclear. Thus, the study aims to assess the impact of flavonoid-rich arriheuk extract, a purple wheat extract, on mitochondrial function using 3T3-L1 adipocytes and investigate the molecular mechanism behind its protective effects against adipogenesis and lipolysis. The study findings strongly indicate that arriheuk significantly suppressed triglyceride levels and inhibited the expression of transcription factors like C/EBPα and PPARγ in 3T3-L1 adipocytes. Furthermore, treatment with arriheuk suppressed the expression of SREBP1c and FAS proteins linked to lipogenesis. In addition, treatment with arriheuk extract decreased the mRNA levels of adipogenic transcription factors, increased glycerol release, and inhibited adipocyte differentiation. Interestingly, the arriheuk-mediated PGC-1α expression triggered mitochondrial biogenesis by promoting the AMPK phosphorylation and SIRT1 expression in adipocytes. Also, arriheuk suppressed adipogenesis and elicited browning through the AMPK- and SIRT1-associated pathways. Collectively, these findings strongly suggest that arriheuk extract regulates browning in 3T3-L1 white adipocytes by triggering the AMPK/SIRT1 pathway, indicating the prospective applications of arriheuk as a functional food to control obesity.

Cite

CITATION STYLE

APA

Yoon, Y., Park, M. K., Kim, K. H., & Lee, G. H. (2023). Black Wheat Extracts (Arriheuk) Regulate Adipogenesis and Lipolysis via Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Signaling Pathways. Foods, 12(14). https://doi.org/10.3390/foods12142727

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free