Abstract
Shiga toxin 1 (Stx1), produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77), causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05-0.1 pM), inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Author supplied keywords
Cite
CITATION STYLE
Brigotti, M., Arfilli, V., Carnicelli, D., Rocchi, L., Calcabrini, C., Ricci, F., … Sestili, P. (2013). Shiga toxin 1, as DNA repair inhibitor, synergistically potentiates the activity of the anticancer drug, mafosfamide, on Raji cells. Toxins, 5(2), 431–444. https://doi.org/10.3390/toxins5020431
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.