Induction of a concept description given noisy instances is difficult and is further exacerbated when the concepts may change over time. This paper presents a solution which has been guided by psychological and mathematical results. The method is based on a distributed concept description which is composed of a set of weighted, symbolic characterizations. Two learning processes incrementally modify this description. One adjusts the characterization weights and another creates new characterizations. The latter process is described in terms of a search through the space of possibilities and is shown to require linear space with respect to the number of attribute-value pairs in the description language. The method utilizes previously acquired concept definitions in subsequent learning by adding an attribute for each learned concept to instance descriptions. A program called STAGGER fully embodies this method, and this paper reports on a number of empirical analyses of its performance. Since understanding the relationships between a new learning method and existing ones can be difficult, this paper first reviews a framework for discussing machine learning systems and then describes STAGGER in that framework.
CITATION STYLE
Schlimmer, J. C., & Granger, R. H. (1986). Incremental learning from noisy data. Machine Learning, 1(3), 317–354. https://doi.org/10.1007/bf00116895
Mendeley helps you to discover research relevant for your work.