Predictive quality model for customer defects

0Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

Purpose: In the context of the journey toward digital transformation and the realization of a fully connected factory, concepts such as data science, artificial intelligence (AI), machine learning (ML) and even predictive models emerge as indispensable pillars. Given the relevance of these topics, the present study focused on the analysis of customer complaint data, employing ML techniques to anticipate complaint accountability. The primary objective was to enhance data accessibility, harnessing the potential of ML models to optimize the complaint handling process and thereby positively contribute to data-driven decision-making. This approach aimed not only to reduce the number of units to be analyzed and customer response time but also to underscore the pressing need for a paradigm shift in quality management. The application of AI techniques sought to enhance not only the efficiency of the complaint handling process and data accessibility but also to demonstrate how the integration of these innovative approaches could profoundly transform the way quality is conceived and managed within organizations. Design/methodology/approach: To conduct this study, real customer complaint data from an automotive company was utilized. Our main objective was to highlight the importance of artificial intelligence (AI) techniques in the context of quality. To achieve this, we adopted a methodology consisting of 10 distinct phases: business analysis and understanding; project plan definition; sample definition; data exploration; data processing and pre-processing; feature selection; acquisition of predictive models; evaluation of the models; presentation of the results; and implementation. This methodology was adapted from data mining methodologies referenced in the literature, taking into account the specific reality of the company under study. This ensured that the obtained results were applicable and replicable across different fields, thereby strengthening the relevance and generalizability of our research findings. Findings: The achieved results not only demonstrated the ability of ML models to predict complaint accountability with an accuracy of 64%, but also underscored the significance of the adopted approach within the context of Quality 4.0 (Q4.0). This study served as a proof of concept in complaint analysis, enabling process automation and the development of a guide applicable across various areas of the company. The successful integration of AI techniques and Q4.0 principles highlighted the pressing need to apply concepts of digitization and artificial intelligence in quality management. Furthermore, it emphasized the critical importance of data, its organization, analysis and availability in driving digital transformation and enhancing operational efficiency across all company domains. In summary, this work not only showcased the advancements achieved through ML application but also emphasized the pivotal role of data and digitization in the ongoing evolution of Quality 4.0. Originality/value: This study presents a significant contribution by exploring complaint data within the organization, an area lacking investigation in real-world contexts, particularly focusing on practical applications. The development of standardized processes for data handling and the application of predictions for classification models not only demonstrated the viability of this approach but also provided a valuable proof of concept for the company. Most importantly, this work was designed to be replicable in other areas of the factory, serving as a fundamental basis for the company’s data scientists. Until then, limited data access and lack of automation in its treatment and analysis represented significant challenges. In the context of Quality 4.0, this study highlights not only the immediate advantages for decision-making and predicting complaint outcomes but also the long-term benefits, including clearer and standardized processes, data-driven decision-making and improved analysis time. Thus, this study not only underscores the importance of data and the application of AI techniques in the era of quality but also fills a knowledge gap by providing an innovative and replicable approach to complaint analysis within the organization. In terms of originality, this article stands out for addressing an underexplored area and providing a tangible and applicable solution for the company, highlighting the intrinsic value of aligning quality with AI and digitization.

Cite

CITATION STYLE

APA

Silva, A. C., Machado, J., & Sampaio, P. (2024). Predictive quality model for customer defects. TQM Journal, 36(9), 155–174. https://doi.org/10.1108/TQM-09-2023-0302

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free