Using micro-XRF to characterize chloride ingress through cold joints in 3D printed concrete

20Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Digital fabrication methods with concrete have been rapidly developing, with many problems related to component production and material control being solved in recent years. These processes produce inherently layered cementitious components that are anisotropic, and in many cases, produces a weak interface between layers, which are generally referred to as cold joints. While material strength at these interfaces has been well studied in recent years, durability has received less attention, even though cold joints can function as channels for aggressive agents, such as chlorides. This work presents a method using micro-X-ray fluorescence (μXRF) to image chloride ingress into layer interfaces of 3D printed fine-grained concrete specimens produced with varying layer deposition time intervals, and also compares it to neutron imaging of moisture uptake. The results show that cold joints formed after a 1 day time interval are highly susceptible to chloride ingress, and that curing conditions play a major role in how quickly interfacial transport can take place. The μXRF method is also shown to be useful for study of transport of chlorides in cold joints, due to its spatial resolution and direct analysis of an aggressive species of interest.

Cite

CITATION STYLE

APA

Bran-Anleu, P., Wangler, T., Nerella, V. N., Mechtcherine, V., Trtik, P., & Flatt, R. J. (2023). Using micro-XRF to characterize chloride ingress through cold joints in 3D printed concrete. Materials and Structures/Materiaux et Constructions, 56(3). https://doi.org/10.1617/s11527-023-02132-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free