A method to resolve the phase state of aerosol particles

40Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

The phase state of atmospheric aerosols has an impact on their chemical aging and their deliquescence and thus their ability to act as cloud condensation nuclei (CCN). The phase change of particles can be induced by the deliquescence or efflorescence of water or by chemical aging. Existing methods, such as tandem differential mobility analysis rely on the size change of particles related to the water uptake or release. To address the need to study the phase change induced by mass-preserving and nearly mass-preserving processes a new method has been developed. The method relies on the physical impaction of particles on a smooth substrate and subsequent counting of bounced particles by a condensation particle counter (CPC). The connection between the bounce probability and physical properties of particles is so far qualitative. To evaluate the performance of this method, the phase state of ammonium sulfate and levoglucosan, crystalline and amorphous solid, in the presence of water vapor was studied. The results show a marked difference in particle bouncing properties between substances - not only at the critical relative humidity level, but also on the slope of the bouncing probability with respect to humidity. This suggests that the method can be used to differentiate between amorphous and crystalline substances as well as to differentiate between liquid and solid phases. © 2012 Author(s).

Cite

CITATION STYLE

APA

Saukko, E., Kuuluvainen, H., & Virtanen, A. (2012). A method to resolve the phase state of aerosol particles. Atmospheric Measurement Techniques, 5(1), 259–265. https://doi.org/10.5194/amt-5-259-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free