Predicting High-Level Human Judgment across Diverse Behavioral Domains

32Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recent advances in machine learning, combined with the increased availability of large natural language datasets, have made it possible to uncover semantic representations that characterize what people know about and associate with a wide range of objects and concepts. In this paper, we examine the power of word embeddings, a popular approach for uncovering semantic representations, for studying high-level human judgment. Word embeddings are typically applied to linguistic and semantic tasks, however we show that word embeddings can be used to predict complex theoretically- and practically- relevant human perceptions and evaluations in domains as diverse as social cognition, health behavior, risk perception, organizational behavior, and marketing. By learning mappings from word embeddings directly onto judgment ratings, we outperform a similarity-based baseline and perform favorably compared to common metrics of human inter-rater reliability. Word embeddings are also able to identify the concepts that are most associated with observed perceptions and evaluations, and can thus shed light on the psychological substrates of judgment. Overall, we provide new methods and insights for predicting and understanding high-level human judgment, with important applications across the social and behavioral sciences.

Cite

CITATION STYLE

APA

Richie, R., Zou, W., & Bhatia, S. (2019). Predicting High-Level Human Judgment across Diverse Behavioral Domains. Collabra: Psychology, 5(1). https://doi.org/10.1525/collabra.282

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free