Design and Analysis of a Novel HVDC Circuit Breaker Test Bench Based on an H-Bridge Cell MMCC

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper proposes a novel circuit configuration for a high-voltage direct-current circuit breaker (HVDCCB) test bench that differs significantly from conventional test benches. The proposed test bench consists of a modular multilevel cascaded converter (MMCC) that is based on H-bridge cells, an output inductor, and an auxiliary capacitor bank. The proposed test bench is capable of generating controllable output currents up to several kiloamperes and output voltages up to several hundred kilovolts because each MMCC cell is operated by phase-shifted pulse-width-modulated (PSPWM) signals. Consequently, the proposed test bench can simulate a wide range of fault conditions within hardware limitations to test different HVDCCB types with various current and voltage ratings. The flexibility of the proposed test bench is complemented by a longer service lifetime with inherent circuit protection in the case of operational failure of the HVDCCB. The concept of the proposed test bench is verified experimentally on a downscaled test bench that consists of nine H-bridge cells and operates at an equivalent switching frequency of 92.5 kHz.

Cite

CITATION STYLE

APA

Krneta, N., & Hagiwara, M. (2022). Design and Analysis of a Novel HVDC Circuit Breaker Test Bench Based on an H-Bridge Cell MMCC. IEEE Access, 10, 75789–75801. https://doi.org/10.1109/ACCESS.2022.3192123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free