Topological term, QCD anomaly, and the η′ chiral soliton lattice in rotating baryonic matter

22Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

We study the ground states of low-density hadronic matter and high-density color-flavor locked color superconducting phase in three-flavor QCD at finite baryon chemical potential under rotation. We find that, in both cases under sufficiently fast rotation, the combination of the rotation-induced topological term for the η′ meson and the QCD anomaly leads to an inhomogeneous condensate of the η′ meson, known as the chiral soliton lattice (CSL). We find that, when baryon chemical potential is much larger than isospin chemical potential, the critical angular velocity for the realization of the η′ CSL is much smaller than that for the π0 CSL found previously. We also argue that the η′ CSL states in flavor-symmetric QCD at low density and high density should be continuously connected, extending the quark-hadron continuity conjecture in the presence of the rotation.

Cite

CITATION STYLE

APA

Nishimura, K., & Yamamoto, N. (2020). Topological term, QCD anomaly, and the η′ chiral soliton lattice in rotating baryonic matter. Journal of High Energy Physics, 2020(7). https://doi.org/10.1007/JHEP07(2020)196

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free