The first edition of Europace journal in 1999 came right around the time of the landmark publication of the electrophysiologists from Bordeaux, establishing how elimination of ectopic activity from the pulmonary veins (PVs) resulted in a marked reduction of atrial fibrillation (AF). The past 25 years have seen an incredible surge in scientific interest to develop new catheters and energy sources to optimize durability and safety of ablation, as well as study the mechanisms for AF and devise ablation strategies. While ablation in the beginning was performed with classic 4 mm tip catheters that emitted radiofrequency (RF) energy to create tissue lesions, this evolved to using irrigation and contact force (CF) measurement while increasing power. Also, so-called single-shot devices were developed with balloons and arrays to create larger contiguous lesions, and energy sources changed from RF current to cryogenic ablation and more recently pulsed field ablation with electrical current. Although PV ablation has remained the basis for every AF ablation, it was soon recognized that this was not enough to cure all patients, especially those with non-paroxysmal AF. Standardized approaches for additional ablation targets have been used but have not been satisfactory in all patients so far. This led to highly technical mapping systems that are meant to unravel the drivers for the maintenance of AF. In the following sections, the development of energies, strategies, and tools is described with a focus on the contribution of Europace to publish the outcomes of studies that were done during the past 25 years.
CITATION STYLE
Boersma, L., Andrade, J. G., Betts, T., Duytschaever, M., Pürerfellner, H., Santoro, F., … Verma, A. (2023, September 1). Progress in atrial fibrillation ablation during 25 years of Europace journal. Europace. Oxford University Press. https://doi.org/10.1093/europace/euad244
Mendeley helps you to discover research relevant for your work.