Polygenic risk prediction based on singular value decomposition with applications to alcohol use disorder

N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background/aim: The polygenic risk score (PRS) shows promise as a potentially effective approach to summarize genetic risk for complex diseases such as alcohol use disorder that is influenced by a combination of multiple variants, each of which has a very small effect. Yet, conventional PRS methods tend to over-adjust confounding factors in the discovery sample and thus have low power to predict the phenotype in the target sample. This study aims to address this important methodological issue. Methods: This study proposed a new method to construct PRS by (1) approximating the polygenic model using a few principal components selected based on eigen-correlation in the discovery data; and (2) conducting principal component projection on the target data. Secondary data analysis was conducted on two large scale databases: the Study of Addiction: Genetics and Environment (SAGE; discovery data) and the National Longitudinal Study of Adolescent to Adult Health (Add Health; target data) to compare performance of the conventional and proposed methods. Result and conclusion: The results show that the proposed method has higher prediction power and can handle participants from different ancestry backgrounds. We also provide practical recommendations for setting the linkage disequilibrium (LD) and p value thresholds.

Cite

CITATION STYLE

APA

Yang, J. J., Luo, X., Trucco, E. M., & Buu, A. (2022). Polygenic risk prediction based on singular value decomposition with applications to alcohol use disorder. BMC Bioinformatics, 23(1). https://doi.org/10.1186/s12859-022-04566-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free