Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions

121Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Steroids that activate glucocorticoid receptors (GRs) and mineralocorticoid receptors have important regulatory effects on neural development, plasticity, and the body's stress response. Here, we investigated the role of corticosteroids in regulating the expression of the glial glutamate transporters glial glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in rat primary astrocytes. The synthetic glucocorticoid dexamethasone provoked a marked increase of GLT-1 transcription and protein levels in cortical astrocytes, whereas GLAST expression remained unaffected. Up-regulation of GLT-1 expression was accompanied by an enhanced glutamate uptake, which could be blocked by the specific GLT-1 inhibitor dihydrokainate. The promoting effect of dexamethasone on GLT-1 gene expression and function was abolished by the GR antagonist mifepristone. A predominant role of the GR was further supported by the observation that corticosterone could elevate GLT-1 expression in a dose-dependent manner, whereas aldosterone, the physiological ligand of the mineralocorticoid receptor, exerted only weak effects even when applied at high concentrations. Moreover, we monitored brain region-specific differences, since all corticosteroids used in this study failed to alter the expression of GLT-1 in midbrain and cerebellar glia, although expression levels of both corticosteroid receptor subtypes were similar in all brain regions analyzed. Dexamethasone, however, modestly enhanced GLT-1 expression in cerebellar glia in combination with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, suggesting that suppression of GLT-1 expression in cerebellar cultures may at least in part be epigenetically mediated by a DNA methylation-dependent process. Taken together, our data highlight a potential role for glucocorticoids in regulating GLT-1 gene expression during central nervous system development or pathophysiogical processes including stress. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Zschocke, J., Bayatti, N., Clement, A. M., Witan, H., Figiel, M., Engele, J., & Behl, C. (2005). Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. Journal of Biological Chemistry, 280(41), 34924–34932. https://doi.org/10.1074/jbc.M502581200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free