Tagging unknown proper names using decision trees

36Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

This paper describes a supervised learning method to automatically select from a set of noun phrases, embedding proper names of different semantic classes, their most distinctive features. The result of the learning process is a decision tree which classifies an unknown proper name on the basis of its context of occurrence. This classifier is used to estimate the probability distribution of an out of vocabulary proper name over a tagset. This probability distribution is itself used to estimate the parameters of a stochastic part of speech tagger.

Cite

CITATION STYLE

APA

Béchet, F., Nasr, A., & Genet, F. (2000). Tagging unknown proper names using decision trees. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (Vol. 2000-October). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1075218.1075229

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free