Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have been extensively explored for various biomedical applications. However, safety issues and the effects of Ti3C2 on human health remain poorly understood. Results: To explore the influence on foetal or offspring after exposure to Ti3C2 nanosheets, we established a mouse model exposed to different doses of Ti3C2 nanosheets during early pregnancy in this study. We found that Ti3C2 nanosheets had negligible effect on the reproductive ability of maternal mice, including average pregnancy days, number of new-borns, and neonatal weight, etc. Unexpectedly, abnormal neurobehavior and pathological changes in the cerebral hippocampus and cortex in adult offspring were observed following Ti3C2 nanosheet treatment. In further studies, it was found that Ti3C2 exposure led to developmental and functional defects in the placenta, including reduced area of labyrinth, disordered secretion of placental hormones, and metabolic function derailment. The long-chain unsaturated fatty acids were significantly higher in the placenta after Ti3C2 exposure, especially docosahexaenoic acid (DHA) and linoleic acid. The metabolic pathway analysis showed that biosynthesis of unsaturated fatty acids was upregulated while linoleic acid metabolism was downregulated. Conclusions: These developmental and functional defects, particularly metabolic function derailment in placenta may be the cause for the neuropathology in the offspring. This is the first report about the effects of Ti3C2 nanosheet exposure on pregnancy and offspring. The data provides a better understanding of Ti3C2 nanosheets safety. It is suggested that future studies should pay more attention to the long-term effects of nanomaterials exposure, including the health of offspring in adulthood, rather than only focus on short-term effects, such as pregnancy outcomes. Metabolomics could provide clues for finding the prevention targets of the biological negative effect of Ti3C2 nanosheets. Graphical Abstract: [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Wen, Y., Hu, L., Li, J., Geng, Y., Yang, Y., Wang, J., … Liu, X. (2022). Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01313-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free