Abstract
T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO4 nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the 5′-PO4 of the nick to form an activated AppN- intermediate (step 2); and attack by the nick 3′-OH on the AppN- strand to form a 3′-5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2-AMP. For substrates with correctly base-paired 3′-OH nick termini, kstep2 was fast (9.5 to 17.9 sec-1) and similar in magnitude to kstep3 (7.9 to 32 sec-1). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage. © 2013 Chauleau and Shuman.
Author supplied keywords
Cite
CITATION STYLE
Chauleau, M., & Shuman, S. (2013). Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions. RNA, 19(12), 1840–1847. https://doi.org/10.1261/rna.041731.113
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.