Abstract
The reaction of the dilithium salt of the enantiopure (S)-BINOL (1,1’-bi-2-naphthol) with two equivalents of the amidinate-stabilized chlorosilylene [LPhSiCl] (LPh=PhC(NtBu)2) led to the formation of the first example of a chiral cyclic silene species comprising an (S)-BINOL ligand. The reactivity of the Si=C bond was investigated by reaction with elemental sulfur, CO2 and HCl. The reaction with S8 led to a Si=C bond cleavage and concomitantly to a ring-opened product with imine and silanethione functional groups. The reaction with CO2 resulted in the cleavage of the CO2 molecule into a carbonyl group and an isolated O atom, while a new stereocenter is formed in a highly selective manner. According to DFT calculations, the [2+2] cycloaddition product is the key intermediate. Further reactivity studies of the chiral cyclic silene with HCl resulted in a stereoselective addition to the Si=C bond, while the fully selective formation of two stereocenters was achieved. The quantitative stereoselective addition of CO2 and HCl to a Si=C bond is unprecedented.
Author supplied keywords
Cite
CITATION STYLE
Sun, X., Hinz, A., Kucher, H., Gamer, M. T., & Roesky, P. W. (2022). Stereoselective Activation of Small Molecules by a Stable Chiral Silene. Chemistry - A European Journal, 28(55). https://doi.org/10.1002/chem.202201963
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.