Simulated computational model lesson improves foundational systems thinking skills and conceptual knowledge in biology students

21Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.
Get full text

Abstract

It is important for undergraduate biology students to understand biological phenomena from a systems perspective because it is important for solving world problems related to the life sciences (e.g., medical and environmental). Unfortunately, students have few opportunities to develop the skills and conceptual knowledge required for a systems perspective. Simulated computational models are promising tools to help students achieve a systems perspective. We examined one lesson that uses simulations of a computational model to teach students about cellular respiration, and we report on its effectiveness to improve systems thinking skills and conceptual knowledge. Concept models revealed that the lesson helped the students identify, relate, and interconnect the components of cellular respiration, thereby improving aspects of their systems thinking skills and conceptual knowledge. We discuss how learning was affected by how the students interacted with the computational model.

Cite

CITATION STYLE

APA

Bergan-Roller, H. E., Galt, N. J., Chizinski, C. J., Helikar, T., & Dauer, J. T. (2018). Simulated computational model lesson improves foundational systems thinking skills and conceptual knowledge in biology students. BioScience, 68(8), 612–621. https://doi.org/10.1093/biosci/biy054

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free