Abstract
Background/Aim: Proliferation biomarkers such as MIB-1 are strong predictors of clinical outcome and response to therapy in patients with non-small-cell lung cancer, but they require histological examination. In this work, we present a classification model to predict MIB-1 expression based on clinical parameters from positron emission tomography. Patients and Methods: We retrospectively evaluated 78 patients with histology-proven non-small-cell lung cancer (NSCLC) who underwent 18F-FDG-PET/CT for clinical examination. We stratified the population into a low and high proliferation group using MIB-1=25% as cut-off value. We built a predictive model based on binary classification trees to estimate the group label from the maximum standardized uptake value (SUVmax) and lesion diameter. Results: The proposed model showed ability to predict the correct proliferation group with overall accuracy >82% (78% and 86% for the low- and high-proliferation group, respectively). Conclusion: Our results indicate that radiotracer activity evaluated via SUVmax and lesion diameter are correlated with tumour proliferation index MIB-1. © 2020 International Institute of Anticancer Research. All rights reserved.
Cite
CITATION STYLE
PALUMBO, B., CAPOZZI, R., BIANCONI, F., FRAVOLINI, M. L., CASCIANELLI, S., MESSINA, S. G., … RAGUSA, M. (2020). Classification Model to Estimate MIB-1 (Ki 67) Proliferation Index in NSCLC Patients Evaluated With 18 F-FDG-PET/CT. Anticancer Research, 40(6), 3355–3360. https://doi.org/10.21873/anticanres.14318
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.