This paper addresses an integrated decision on production scheduling and delivery operations, which is one of the most important issues in supply chain scheduling. We study a model in which a set of jobs ordered by only one customer and a set of decentralized manufacturers located at different locations are considered. Specifically, each job must be assigned to one of the decentralized manufacturers to process on its single machine facility. Then, the job is delivered to the customer directly in batch without intermediate inventory. The objective is to find a joint schedule of production and distribution to optimize the customer service level and delivery cost. In our work, we discuss this problem considering two different situations in terms of the customer service level. In the first one, the customer service is measured by the maximum arrival time, while the customer service is measured by the total arrival time in the second one. For each situation, we develop a dynamic programming algorithm to solve, respectively. Moreover, we identify a special case for the latter situation by introducing its corresponding solutions.
CITATION STYLE
Li, S., Zhong, X., Li, H., & Li, S. (2014). Batch delivery scheduling with multiple decentralized manufacturers. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/321513
Mendeley helps you to discover research relevant for your work.