Colorectal cancer is the third most common cancer worldwide with an annual incidence of similar to 1 million cases and an annual mortality rate of similar to 655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.011601, 571-585, 2012.
CITATION STYLE
Balog, C. I. A., Stavenhagen, K., Fung, W. L. J., Koeleman, C. A., McDonnell, L. A., Verhoeven, A., … Wuhrer, M. (2012). N-glycosylation of Colorectal Cancer Tissues. Molecular & Cellular Proteomics, 11(9), 571–585. https://doi.org/10.1074/mcp.m111.011601
Mendeley helps you to discover research relevant for your work.