Background: Chrysanthemum seticuspe has emerged as a model plant species of cultivated chrysanthemums, especially for studies involving diploid and self-compatible pure lines (Gojo-0). Its genome was sequenced and assembled into chromosomes. However, the genome annotation of C. seticuspe still needs to be improved to elucidate the complex regulatory networks in this species. Results: In addition to the 74,259 mRNAs annotated in the C. seticuspe genome, we identified 18,265 novel mRNAs, 51,425 novel lncRNAs, 501 novel miRNAs and 22,065 novel siRNAs. Two C-class genes and YABBY family genes were highly expressed in disc florets, while B-class genes were highly expressed in ray florets. A WGCNA was performed to identify the hub lncRNAs and mRNAs in ray floret- and disc floret-specific modules, and CDM19, BBX22, HTH, HSP70 and several lncRNAs were identified. ceRNA and lncNAT networks related to flower development were also constructed, and we found a latent functional lncNAT–mRNA combination, LXLOC_026470 and MIF2. Conclusions: The annotations of mRNAs, lncRNAs and small RNAs in the C. seticuspe genome have been improved. The expression profiles of flower development-related genes, ceRNA networks and lncNAT networks were identified, laying a foundation for elucidating the regulatory mechanisms underlying disc floret and ray floret formation.
CITATION STYLE
Sun, D., Zhang, J., He, J., Geng, Z., Li, S., Zhang, J., … Song, A. (2022). Whole-transcriptome profiles of Chrysanthemum seticuspe improve genome annotation and shed new light on mRNA–miRNA–lncRNA networks in ray florets and disc florets. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03889-y
Mendeley helps you to discover research relevant for your work.