Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters

31Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: To assess the corneal stress-strain index (SSI), which is a marker for material stiffness and corneal biomechanical parameters, in myopic eyes. Methods: A total of 1054 myopic patients were included in this study. Corneal visualisation Scheimpflug technology was used to measure the SSI. Corneal biomechanics were assessed using the first and second applanation times (A1-and A2-times); maximum deflection amplitude (DefAmax); deflection area (HCDefArea); the highest concavity peak distance (HC-PD), time (HC-time), and deflection amplitude (HC-DefA); integrated radius (IR); whole eye movement (WEM); stiffness parameter (SP-A1;, biomechanically corrected intraocular pressure (BIOP); and Corvis biomechanical index (CBI). Scheimpflug tomography was used to obtain the mean keratometery (Km) and central corneal thickness (CCT). According to the spherical equivalent (SE) (low myopia: SE ≥ − 3.00D and high myopia: SE ≤ − 6.00D.), the suitable patients were divided into two groups. Results: The mean SSI value was 0.854 ± 0.004. The SSI had a positive correlation with A1-time ((r = 0.272), HC-time (r = 0.218), WEM (r = 0.288), SP-A1 (r = 0.316), CBI (r = 0.199), CCT (r = 0.125), bIOP (r = 0.230), and SE (r = 0.313) (all p-values<0.01). The SSI had a negative correlation with HCDefA (r = − 0.721), HCDefArea (r = − 0.665), HC-PD(r = − 0.597), IR (r = − 0.555), DefAmax (r = − 0.564), and Km (r = − 0.103) (all p-values<0.01). There were significant differences in SSI (t = 8.960, p<0.01) and IR (t = − 3.509, p<0.01) between the low and high myopia groups. Conclusions: In different grades of myopia, the SSI values were lower in eyes with higher SEs. It indicates that the mechanical strength of the cornea may be compromised in high myopia. The SSI was positively correlated with the spherical equivalent, and it may provide a new way to study the mechanism of myopia.

Cite

CITATION STYLE

APA

Han, F., Li, M., Wei, P., Ma, J., Jhanji, V., & Wang, Y. (2020). Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters. BMC Ophthalmology, 20(1). https://doi.org/10.1186/s12886-020-01729-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free