A seed-specific regulator of triterpene saponin biosynthesis in medicago truncatula

32Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Plants produce a vast array of defense compounds to protect themselves from pathogen attack or herbivore predation. Saponins are a specific class of defense compounds comprising bioactive glycosides with a steroidal or triterpenoid aglycone backbone. The model legume Medicago truncatula synthesizes two types of saponins, hemolytic saponins and nonhemolytic soyasaponins, which accumulate as specific blends in different plant organs. Here, we report the identification of the seed-specific transcription factor TRITERPENE SAPONIN ACTIVATION REGULATOR3 (TSAR3), which controls hemolytic saponin biosynthesis in developing M. truncatula seeds. Analysis of genes that are coexpressed with TSAR3 in transcriptome data sets from developing M. truncatula seeds led to the identification of CYP88A13, a cytochrome P450 that catalyzes the C-16a hydroxylation of medicagenic acid toward zanhic acid, the final oxidation step of the hemolytic saponin biosynthesis branch in M. truncatula. In addition, two uridine diphosphate glycosyltransferases, UGT73F18 and UGT73F19, which glucosylate hemolytic sapogenins at the C-3 position, were identified. The genes encoding the identified biosynthetic enzymes are present in clusters of duplicated genes in the M. truncatula genome. This appears to be a common theme among saponin biosynthesis genes, especially glycosyltransferases, and may be the driving force of the metabolic evolution of saponins.

Cite

CITATION STYLE

APA

Ribeiro, B., Lacchini, E., Bicalho, K. U., Mertens, J., Arendt, P., Bossche, R. V., … Pollier, J. (2020). A seed-specific regulator of triterpene saponin biosynthesis in medicago truncatula. Plant Cell, 32(6), 2020–2042. https://doi.org/10.1105/tpc.19.00609

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free