The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in the variational calculation of the 2-RDM require a special optimization known as a semidefinite programming. Development of first-order semidefinite programming for the 2-RDM method has reduced the computational costs of the calculation by orders of magnitude [Mazziotti, Phys. Rev. Lett. 93 (2004) 213001]. The variational 2-RDM approach is effective at capturing multi-reference correlation effects that are especially important at non-equilibrium molecular geometries. Recent work on 2-RDM methods will be reviewed and illustrated with particular emphasis on the importance of advances in large-scale semidefinite programming. © EDP Sciences, SMAI 2007.
CITATION STYLE
Mazziotti, D. A. (2007). First-order semidefinite programming for the two-electron treatment of many-electron atoms and molecules. Mathematical Modelling and Numerical Analysis, 41(2), 249–259. https://doi.org/10.1051/m2an:2007021
Mendeley helps you to discover research relevant for your work.