EGF receptor deletion in podocytes attenuates diabetic nephropathy

125Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

The generation of reactive oxygen species (ROS), particularly superoxide, by damaged or dysfunctional mitochondria has been postulated to be an initiating event in the development of diabetes complications. The glomerulus is a primary site of diabetic injury, and podocyte injury is a classic hallmark of diabetic glomerular lesions. In streptozotocin-induced type 1 diabetes, podocyte-specific EGF receptor (EGFR) knockout mice (EGFRpodKO) and their wild-type (WT) littermates had similar levels of hyperglycemia and polyuria, but EGFRpodKO mice had significantly less albuminuria and less podocyte loss compared with WT diabetic mice. Furthermore, EGFRpodKO diabetic mice had less TGF-β1 expression, Smad2/3 phosphorylation, and glomerular fibronectin deposition. Immunoblotting of isolated glomerular lysates revealed that the upregulation of cleaved caspase 3 and downregulation of Bcl2 in WT diabetic mice were attenuated in EGFRpodKO diabetic mice. Administration of the SOD mimetic mito-tempol or the NADPH oxidase inhibitor apocynin attenuated the upregulation of p-c-Src, p-EGFR, p-ERK1/2, p-Smad2/3, and TGF-β1 expression and prevented the alteration of cleaved caspase 3 and Bcl2 expression in glomeruli of WT diabetic mice. High-glucose treatment of cultured mouse podocytes induced similar alterations in the production of ROS; phosphorylation of c-Src, EGFR, and Smad2/3; and expression of TGF-β1, cleaved caspase 3, and Bcl2. These alterations were inhibited by treatment with mito-tempol or apocynin or by inhibiting EGFR expression or activity. Thus, results of our studies utilizing mice with podocyte-specific EGFR deletion demonstrate that EGFR activation has a major role in activating pathways that mediate podocyte injury and loss in diabetic nephropathy.

Cite

CITATION STYLE

APA

Chen, J., Chen, J. K., & Harris, R. C. (2015). EGF receptor deletion in podocytes attenuates diabetic nephropathy. Journal of the American Society of Nephrology, 26(5), 1115–1125. https://doi.org/10.1681/ASN.2014020192

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free