Abstract
This work addresses the integration of two methods or strategies of Model-Based Predictive Control, namely: Fuzzy Model-Based Predictive Control (FMBPC) and Closed-Loop Predictive Control (CLP-MPC). The first of these strategies uses principles of Predictive Functional Control (PFC) and is framed, at the same time, in the field of Intelligent Control (IC). The main objective of the integration is to provide to the FMBPC nonlinear control strategy an optimization procedure that allows the automatic handling of constraints in the control variable. The proposed solution consists of making use of a complementary structure of the CLP-MPC type to determine by optimization, at each sampling instant, the optimal values of a certain additive term, to be added to the FMBPC control law, in such a way that they are satisfied the constraints. The prediction model and base control law necessary to perform the calculations on the CLP-MPC structure are provided by the FMBPC strategy. The proposed FMBPC/CLP mixed strategy has been validated, in simulation, applying it to the control of activated sludge processes in wastewater treatment plants (WWTP), focusing on the imposition of constraints on the control action. The results obtained are satisfactory, observing a good performance of the designed control algorithm, while guaranteeing both the satisfaction of the constraints, which was the main objective, and the stability of the closed-loop system.
Author supplied keywords
Cite
CITATION STYLE
Vallejo, P. M., & Vega, P. (2021). Integration of the FMBPC strategy in a closed-loop predictive control structure. Application to the control of activated sludge. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 19(1), 13–26. https://doi.org/10.4995/riai.2021.15793
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.