Stable and unstable trajectories in a dipolar chain

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In classical mechanics, solutions can be classified according to their stability. Each of them is part of the possible trajectories of the system. However, the signatures of unstable solutions are hard to observe in an experiment, and most of the times if the experimental realization is adiabatic, they are considered just a nuisance. Here we use a small number of XY magnetic dipoles subject to an external magnetic field for studying the origin of their collective magnetic response. Using bifurcation theory we have found all the possible solutions being stable or unstable, and explored how those solutions are naturally connected by points where the symmetries of the system are lost or restored. Unstable solutions that reveal the symmetries of the system are found to be the culprit that shape hysteresis loops in this system. The complexity of the solutions for the nonlinear dynamics is analyzed using the concept of boundary basin entropy, finding that the damping timescale is critical for the emergence of fractal structures in the basins of attraction. Furthermore, we numerically found domain wall solutions that are the smallest possible realizations of transverse walls and vortex walls in magnetism. We experimentally confirmed their existence and stability showing that our system is a suitable platform to study domain wall dynamics at the macroscale.

Cite

CITATION STYLE

APA

Cisternas, J., Mellado, P., Urbina, F., Portilla, C., Carrasco, M., & Concha, A. (2021). Stable and unstable trajectories in a dipolar chain. Physical Review B, 103(13). https://doi.org/10.1103/PhysRevB.103.134443

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free