LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications †

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In order to improve the accuracy of signal recovery after transmitting over atmospheric turbulence channel, a deep-learning-based signal detection method is proposed for a faster-than-Nyquist (FTN) hybrid modulated optical wireless communication (OWC) system. It takes advantage of the long short-term memory (LSTM) network in the recurrent neural network (RNN) to alleviate the interdependence problem of adjacent symbols. Moreover, an LSTM attention decoder is constructed by employing the attention mechanism, which can alleviate the shortcomings in conventional LSTM. The simulation results show that the bit error rate (BER) performance of the proposed LSTM attention neural network is 1 dB better than that of the back propagation (BP) neural network and outperforms by 2.5 dB when compared with the maximum likelihood sequence estimation (MLSE) detection method.

Cite

CITATION STYLE

APA

Cao, M., Yao, R., Xia, J., Jia, K., & Wang, H. (2022). LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications †. Sensors, 22(22). https://doi.org/10.3390/s22228992

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free